1992

The Internet becomes such a part of the computing establishment that a professional society forms to guide it on its way. The Internet Society (ISOC), with Vint Cerf and Bob Kahn among its founders, validates the coming of age of inter-networking and its pervasive role in the lives of professionals in developed countries. The IAB and its supporting committees become part of ISOC.
The number of networks exceeds 7,500 and the number of computers connected passes 1,000,000. The MBONE for the first time carries audio and video. The challenge to the telephone network’s dominance as the basis for communicating between people is seen for the first time; the Internet is no longer just for machines to talk to each other.
During the summer, students at NCSA in University of Illinois at Urbana-Champaign modify Tim Berners-Lee’s hypertext proposal. In a few weeks MOSAIC is born within the campus. Larry Smarr shows it to Jim Clark, who founds Netscape as a result.
The WWW bursts into the world and the growth of the Internet explodes like a supernova. What had been doubling each year, now doubles in three months. What began as an ARPA experiment has, in the span of just 30 years, become a part of the world’s popular culture.
This timeline was initially created for the Supercomputing 97 Conference as a forty-foot long by ten-foot high wall. This wall embedded actual physical artifacts relating to the timeline and was produced with support from ACM/IEEE CS SC97.
Credits:
Web Layout and Design: Dan Lythcott-Haims
Poster Layout and Design: Dan Lythcott-Haims
Historical Research: Dag Spicer, Gwen Bell (Computer History Museum), Jan Zimmerman, Jacqueline Boas, Bill Boas (AbbaTech).

1991

The net’s dramatic growth continues with NSF lifting any restrictions on commercial use. Interchanges form with popular providers such as UUNET and PSInet. Congress passes the Gore Bill to create the National Research and Education Network, or NREN initiative. In another sign of popularity, privacy becomes an ‘issue,’ with proposed solutions such as PGP (Pretty Good Privacy).
The NSFNET backbone upgrades to T3, or 44 Mbps. Total traffic exceeds 1 trillion bytes, or 10 billion packets per month! Over 100 countries are now connected with over 600,000 hosts and nearly 5,000 separate networks.
WAIS’s and Gophers help meet the challenge of searching for information throughout this exploding infrastructure of computers.

1989





The number of hosts increases from 80,000 in January to 130,000 in July to over 160,000 in November!Australia, Germany, Israel, Italy, Japan, Mexico, Netherlands, New Zealand and the United Kingdom join the Internet.
Commercial e-mail relays start between MCIMail through CNRI and Compuserve through Ohio State. The Internet Architecture Board reorganizes again reforming the IETF and the IRTF.
Networks speed up. NSFNET T3 (45Mbps) nodes operate. At Interop 100Mbps LAN technology, known as FDDI, interoperates among several vendors. The telephone companies start to work on their own wide area packet switching service at higher speeds - calling it SMDS.
Bob Kahn and Vint Cerf at CNRI hold the first Gigabit (1000Mbps) Testbed workshops with funding from ARPA and NSF. Over 600 people from a wide range of industry, government and academia attend to discuss the formation of 6 gigabit testbeds across the country.
The Cray 3, a direct descendant of the Cray line, starting from the CDC 6600, is produced.
In Switzerland at CERN Tim Berners-Lee addresses the issue of the constant change in the currency of information and the turn-over of people on projects. Instead of an hierarchical or keyword organization, Berners-Lee proposes a hypertext system that will run across the Internet on different operating systems. This was the World Wide Web.

1990

ARPANET formally shuts down. In twenty years, ‘the net’ has grown from 4 to over 300,000 hosts. Countries connecting in 1990 include Argentina, Austria, Belgium, Brazil, Chile, Greece, India, Ireland, South Korea, Spain, and Switzerland.
Several search tools, such as ARCHIE, Gopher, and WAIS start to appear. Institutions like the National Library of Medicine, Dow Jones, and Dialog are now on line.
More ‘worms’ burrow on the net, with as many as 130 reports leading to 12 real ones! This is a further indication of the transition to a wider audience.

1988

The upgrade of the NSFNET backbone to T1 completes and the Internet starts to become more international with the connection of Canada, Denmark, Finland, France, Iceland, Norway and Sweden.
In the US more regionals spring up - Los Nettos and CERFnet both in California. In addition, Fidonet, a popular traditional bulletin board system (BBS) joins the net.
Dan Lynch organizes the first Interop commercial conference in San Jose for vendors whose TCP/IP products interoperate reliably. 50 companies make the cut and 5,000 networkers come to see it all running, to see what works, and to learn what doesn’t work.
The US Government pronounces its OSI Profile (GOSIP) is to be supported in all products purchased for government use, and states that TCP/IP is an interim solution!
The Morris WORM burrows on the Internet into 6,000 of the 60,000 hosts now on the network. This is the first worm experience and DARPA forms the Computer Emergency Response Team (CERT) to deal with future such incidents.
CNRI obtains permission from the Federal Networking Council and from MCI to interconnect the commercial MCI Mail service to the Internet. This broke the barrier to carrying commercial traffic on the Internet backbone. By 1989 MCI Mail, OnTyme, Telemail and CompuServe had all interconnected their commercial email systems to the Internet and, in so doing, interconnected with each other for the first time. This was the start of commercial Internet services in the United States (and possibly the world).